Learn DU Make it big!

All The Best

For Your Exams

[This question paper contains 4 printed pages]

Your Roll No.	2019
Sl. No. of Q. Paper	: 7463
Unique Paper Code	: 32351301
Name of the Course	: B.Sc.(Hons.) Mathematics
Name of the Paper	: Theory of Real Functions
Semester	: III
Time : 3 Hours	Maximum Marks : 75

Instructions for Candidates :

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any **three** parts from each question.
- (c) All questions carry equal marks.
- 1. (a) Find the following limit and establish it by using $\in -\delta$ definition of limit :

$$\lim_{x \to -1} \frac{x+5}{2x+3}$$

(b) State and prove the sequential criterion for limits of a real valued function.

7463

(c) Determine whether the following limit exists in R :

 $\lim_{x\to 0} \operatorname{sgn}(\sin 1/x^2)$

(d) Show that :

$$\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$$

and establish that

```
\lim_{x\to 0^+} e^{\frac{1}{x}}
```

does not exist in R.

2. (a) Let $c \in R$ and f be defined on (c, ∞) and f (x) > 0 for all $x \in (c, \infty)$. Show that

 $\lim_{x\to\infty} f(x) = \infty$

if and only if

$$\lim_{x\to\infty}\frac{1}{f(x)}=0$$

(b) Evaluate the following limit by using the appropriate definition :

$$\lim_{x \to 1^+} \frac{x}{x-1}$$

- (c) Determine the points of continuity of the function f (x) = x [x] where [.] denotes the greatest integer function.
- (d) A function f: R→R is such that f (x+y) = f(x)
 + f(y) for all x,y in R. Prove that if f is continuous at some point x₀, then it is continuous at every point of R.
- **3.** (a) Let $A \subseteq R$ and $f: A \to R$ and let $f(x) \ge 0$, for all $x \in A$. Let \sqrt{f} be defined as $\sqrt{f}(x) = \sqrt{f(x)}$ for $x \in A$. Show that if f is continuous at a point $c \in A$, then \sqrt{f} is continuous at c.
 - (b) Suppose that f:R→R is continuous on R and that f(r) = 0 for every rational number r. Prove that f(x) = 0 for all x∈R.
 - (c) Let f be a continuous and real valued function defined on a closed and bounded interval [a, b]. Prove that f is bounded. Give an example to show that the condition of boundedness of the interval cannot be dropped.
 - (d) State the intermediate value theorem. Show that x₂^k = 1 for some x ∈]0, 1[.

P.T.O.

7463

- **4.** (a) Show that the function $f(x) = x^2$ is uniformly continuous on [-2, 2], but it is not uniformly continuous on *R*.
 - (b) Prove that if f and g are uniformly continuous on A ⊆ R and if they both are bounded on A, then their product fg is uniformly continuous on A.
 - (c) Show that the function
 f(x) = |x + 1| + |x 1|
 is not differentiable at -1 and 1.
 - (d) Prove that if f : R → R is an even function and has a derivative at every point, then the derivative f is an odd function.
- 5. (a) State Darboux theorem. Let I be an interval and f: I → R be differentiable on I. Show that if the derivative f' is never zero on I, then either f'(x) > 0 for all x ∈ I or f'(x) < 0 for all x ∈ I.</p>
 - (b) Find the Taylor's series for $\cos x$ and indicate why it converges to $\cos x$ for all $x \in \mathbb{R}$.
 - (c) Prove that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$, with equality occurring if and only if x = 0.5.
 - (d) Is f (x) = |x|, x ∈ R, a convex function ? Is every convex function differentiable ? Justify your answer.

3500

Join Us For University Updates

Learn_DU

